Concentration Dependence of the Rotational Motion of Tetraphenylborate and Tetraphenylarsonium Ions in Aqueous Solution. Effect of Their Self-Association

Yuichi MASUDA* and Haruhiko YOKOYAMA[†]

Department of Chemistry Faculty of Science, Tokyo Metropolitan University,

Setagaya-ku, Tokyo 158

†Department of Chemistry, Yokohama City University, Kanagawa-ku, Yokohama 236

The ^{13}C spin-lattice relaxation times and NOE for the para carbons of Ph₄As+ and BPh₄- were measured in D₂O and CD₃OD. The osmotic coefficients were also determined in the aqueous solutions of Ph₄AsCl and NaBPh₄. A remarkable increase in the rotational correlation time of the Ph₄As+ ion with increasing concentration was attributed to the formation of aggregates containing two or more Ph₄As+ ions.

The assumption that the transfer energy from one solvent to another is equal between Ph_4As^+ (or Ph_4P^+) and BPh_4^- has been widely used for dividing thermodynamic parameters into individual ionic contributions, because these ions are of similar ionic radius and of the same ionic charge. On the other hand, differences between Ph_4As^+ (or Ph_4P^+) and Ph_4P^- in aqueous solution have been observed in various experiments: e.g., various thermodynamical measurements, 2, 3) the near-infrared spectra of water, and NMR chemical shifts of water proton. The differences were related to the difference in the hydration and/or in the ion-pair formation with their counter ions and/or in the aggregate formation of the Ph_4As^+ and Ph_4P^- ions themselves. Ph_4P^-

The present study is focused on the ion-ion interaction particularly between the Ph_4As^+ ions and between the BPh_4^- ions in the aqueous solutions of their salts. For this purpose the concentration dependence of the rotational correlation times of the Ph_4As^+ and BPh_4^- ions was determined by measuring the ^{13}C spin-lattice relaxation rates of the para carbon of the phenyl group. The difference in the concentration dependence of the rotational correlation times is related to the formation of aggregates of the Ph_4As^+ ions and of the BPh_4^- ions.

The ^{13}C NMR spectra were recorded on a JEOL FX200 FT-NMR spectrometer at 50.1 MHz and the spin-lattice relaxation rates, R₁, were measured by the inversion-recovery method. For several samples, the measurements of R₁ were repeated 3 times or more; consistent results (within 3%) were obtained for R₁ of each sample. The $^{13}\text{C}-\{^{1}\text{H}\}$ NOE (nuclear Overhauser enhancement) was determined by the gated-decoupling method. Details of the measurements have been described in previous papers. 6 , 7) The temperature of the sample solution was controlled at 25.0 $^{\circ}$ C. The osmotic coefficients of Ph₄AsCl and NaBPh₄ in aqueous solution at 25.0 $^{\circ}$ C were determined by vapor-pressure osmometry, in a similar manner as

1770 Chemistry Letters, 1988

previously reported.8)

The rate of ^{13}C relaxation due to the dipolar interaction with the attached proton, R_1^D , were determined by the measured spin-lattice relaxation rate, R_1 , and NOE values, $^{\eta}_{NOE}$, according to the relation: 9)

$$R_1^D = R_1^{\eta_{NOE}}/1.987$$

The obtained R_1^D values of the para carbon are related to the correlation times of the C-H vectors, τ_C , by the equation: 9)

$$R_1^D = \gamma_H^2 \gamma_C^2 \hbar^2 \cdot r_{CH}^{-6} \cdot \tau_C \tag{1}$$

where r_{CH} is the C-H bond length and is taken to be 0.109 nm. The obtained R_1^D values of the para carbon and the τ_C values, which are determined from the R_1^D according to Eq. 1, are shown in Fig. 1. The τ_C values thus determined coincide with the rotational correlation times of the Ph₄As⁺ and BPh₄⁻ ions.

The obtained τ_C values in D₂O at infinite dilution show no significant difference between the Ph₄As⁺ and the BPh₄⁻ ion; the difference in the interaction of the Ph₄As⁺ ion and of the BPh₄⁻ ion with water, as has been predicted by the near-infrared and NMR chemical shift of water, ⁴, ⁵) does not influence their rotational motions.

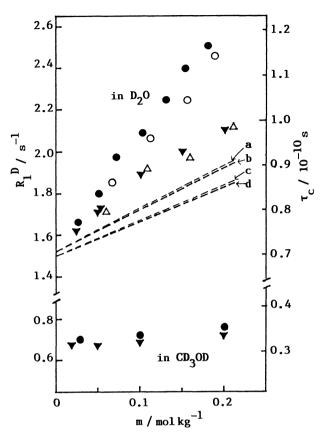
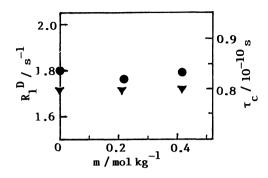



Fig. 1. Plots of the R₁^D and τ_c values of Ph₄As⁺ and BPh₄⁻ in D₂O and CD₃OD at 25.0 °C vs. the concentration of Ph₄AsCl (\bullet), (Ph₄As)(SO₄)_{1/2} (\bullet), NaBPh₄ (\bullet), and LiBPh₄ (\bullet). The broken lines indicate calculated values of τ_c on_r (τ_c o and τ_r are the rotational correlation time at infinite dilution and relative viscosity of the solutions, respectively): (a), LiBPh₄; (b), NaBPh₄; (c), (Ph₄As)(SO₄)_{1/2}; (d), Ph₄AsCl.

The obtained $\tau_{\rm C}$ values of Ph₄As⁺ and BPh₄⁻ increased with increasing concentration of the salts of those ions in D₂O and the increase was particularly remarkable for the Ph₄As⁺ ion. (Fig. 1) If a hydrodynamic model could be applied to the present systems, the rotational correlation time would be given by a linear function of the viscosity of the solution.¹⁰) The change in the $\tau_{\rm C}$ values predicted from the viscosity change of the solution is represented by the broken lines in Fig. 1. The predicted increase in $\tau_{\rm C}$ is much less than that observed, particularly in the aqueous solution of the Ph₄As⁺ salts. The failure of the hydrodynamic model in reproducing the experimental concentration dependence of the $\tau_{\rm C}$ value indicates that the medium around the Ph₄As⁺ and BPh₄⁻ ions cannot be regarded as continuum for the rotation of those ions. Short-range interaction of the Ph₄As⁺ and the BPh₄⁻ ions with themselves and/or their counter ions is

important in the rotational motion of those ions in water.

The change in the R_1^D values of the para carbon were also measured as a function of the concentration (0.1 - 0.4 mol kg⁻¹) of NaCl added to the dilute D_2O solutions of Ph₄AsCl and NaBPh₄ (0.05 mol kg⁻¹), respectively. The results are shown in Fig. 2. The effect of added NaCl on the $^{\tau}_{C}$ values was found to be very slight. This indicates that the interactions of Ph₄As+ with Cl⁻ and of BPh₄⁻ with Na+ give no specific effect on the rotational motions of the Ph₄As+ and BPh₄⁻ ions. Therefore, the large increase in the τ_{C} value with increasing concentration as shown in Fig. 1

Fig. 2. Plots of the R_1^D and τ_C values of Ph_4As^+ and BPh_4^- vs. the concentration of NaCl added to the 0.05 mol/kg D_2O solutions of Ph_4AsCl (\bullet), and $NaBPh_4$ (\blacktriangledown) at 25 oC .

can be attributed to short-range interaction between the Ph_4As^+ ions and between the BPh_4^- ions, the interaction being larger between the former than between the latter. As shown in Fig. 1, the different salts of Ph_4As^+ (Ph_4AsCl and ($Ph_4As)_2SO_4$) and of BPh_4^- ($NaBPh_4$ and $LiBPh_4$) in D_2O showed only slight differences in the τ_C values; this also indicates that the increase in the τ_C values is caused not by the interaction with the counter ions but by the interaction of the bulky ions with themselves.

The $^{\rm T}_{\rm C}$ values of Ph₄As⁺ and BPh₄⁻ ions showed only slight dependence on the concentration in the CD₃OD solutions (Fig. 1), in striking contrast with the case of the aqueous solutions. This can be explained by the lack of significant short-range interaction between the Ph₄As⁺ and between the BPh₄⁻ ions, because electrostatic interionic repulsion is stronger in methanol with a smaller dielectric constant.

The short-range interaction which increases the rotational correlation times of the tetraphenyl ions may be ascribed to forming aggregates containing the two or more Ph_4As^+ ions or BPh_4^- ions; the larger increase in the $^{\rm T}_{\rm C}$ values of the Ph_4As^+ ion indicates that the tendency to form the aggregates is larger for Ph_4As^+ than for BPh_4^- . Such aggregation of bulky univalent ions is also found in aqueous solution of tetraalkylanmmonium salts.11)

A similar diminution of the ionic rotation has also been reported for the aqueous solutions of the chloride and sulfate of $[Ru(phen)_3]^{2+}$ (phen=1,10-phenanthroline).⁶⁾ In this case the restriction of the rotational motion of the $[Ru(phen)_3]^{2+}$ ion is caused by the formation of aggregates containing the two complex ions, where one of the phenanthroline ligands of each complex ion partially occupying an opening between the ligands of the other complex ion.¹²⁾ The restriction of the rotational motion of the Ph₄As⁺ and BPh₄⁻ ions may be similarly explained by a bite of the phenyl groups of the two Ph₄As⁺ ions and the two BPh₄⁻ ions in the aggregates.

The measurement of osmotic coefficients for the aqueous solutions of Ph_4AsCl at concentrations ranging between 0.005 - 0.1 mol kg^{-1} showed large negative

1772 Chemistry Letters, 1988

deviation from the Debye-Hückel theory, whereas that deviation in the aqueous solution of NaBPh4 was small; e.g., the deviations are -0.255 at 0.1007 mol kg⁻¹ for Ph4AsCl and -0.043 at 0.0999 mol kg⁻¹ for NaBPh4. A similar negative deviation in the osmotic coefficients of Ph4AsCl has been reported and explained in terms of the specific interaction of water molecules with the π -electron of the phenyl groups.³⁾ However, considering the large tendency to form the aggregates of Ph4As+, which is predicted from the ¹³C relaxation rates, the decrease in the effective number of ions in the solution may also contribute largely to the negative deviation of the osmotic coefficients.

Various thermodynamic 1a,2) and spectroscopic studies 4,5) suggest difference in the interaction of the Ph_4As^+ ion and of the BPh_4^- ion with water. This difference in the interaction may be closely related to the difference in the aggregate formation of the Ph_4As^+ and BPh_4^- ions themselves, but detail of the driving force to form the aggregates is not elucidated in the present stage. Further quantitative analysis for the τ_C values and the osmotic coefficients at various temperatures are now going.

We thank the Instrument Center of the Institute of Molecular Science and Professor Hirotoshi Sano (Tokyo Metropolitan University) for according facility to use NMR spectrometers and also thank Professor Hideo Yamatera (Daido Institute of Technology) for his helpful discussion. This work was partially supported by Grant-in-Aid for Scientific Research No. 62124039 and No. 63740343 from the Ministry of Education, Science and Culture.

References

- a) C. V. Krishnan and H. L. Friedman, J. Phys. Chem., 73, 3935 (1969); H. L. Friedman and C. V. Krishnan, "Water, a Comprehensive Treatise," ed by F. Franks, Prenum, New York (1973), Vol. 3, Chap. 1; b) M. H. Abraham, T. Hill, H. C. Ling, R. A. Schultz, and R. A. C. Watt, J. Chem. Soc., Faraday Trans. 1, 80, 489 (1984).
- 2) C. Jolicoeur, P. R. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers, Can. J. Chem., <u>50</u>, 3167 (1972); K. Takaizumi and T. Wakabayashi, Bull. Chem. Soc. Jpn., 49, 2194 (1976).
- 3) G. Kalfoglou and L. H. Bowen, J. Phys. Chem., <u>73</u>, 2728 (1969).
- 4) C. Jolicoeur, N. D. The, and A. Cabana, Can. J. Chem., 49, 2008 (1971).
- 5) J. F. Coetzee and W. R. Sharpe, J. Phys. Chem., 75, 3141 (1971).
- 6) Y. Masuda and H. Yamatera, J. Phys. Chem., 87, 5339 (1983).
- 7) Y. Masuda and H. Yamatera, J. Phys. Chem., <u>88</u>, 3425 (1984).
- 8) H. Yokoyama and H. Yamatera, Bull. Chem. Soc. Jpn., 48, 2708 (1975).
- 9) J. R. Lyerla, Jr. and G. C. Levy, "Topics in Carbon-13 NMR Spectroscopy," ed by G. C. Levy, John Wiley & Sons, New York (1974), Vol. 1, Chap. 3.
- 10) P. A. Madden, Annu. Rev. Phys. Chem., 31, 523 (1980).
- 11) G. Atkinson, R. Garnsey, and M. J. Tait, "Hydrogen-Bonded Solvent Systems," ed by A. K. Covington and P. Jones, Taylor and Francis Ltd., London (1968), p. 161.
- 12) Y. Masuda and H. Yamatera, Bull. Chem. Soc. Jpn., <u>57</u>, 58 (1984).

(Received July 18, 1988)